

Glycosylations of Glycals using N-lodosuccinimide (NIS) and Phosphorus Compounds for Syntheses of 2-lodo- and 2-Deoxyglycosides

Tomoya Kimura, Daisuke Takahashi, and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Supporting Information

ABSTRACT: The glycosylations of glycals and alcohols using N-iodosuccinimide (NIS) and a catalytic amount of PPh₃ effectively proceeded under mild conditions to provide the corresponding 2-deoxy-2-iodoglycosides in high yields. The reactivity of the iodoglycosylations with PPh₃ significantly increased in comparison to that using NIS alone as an activator. In addition, the glycosylations of glycals and alcohols using catalytic amounts of NIS and P(OPh), were effectively realized to give the corresponding 2-deoxyglycosides in high yields.

■ INTRODUCTION

Many kinds of natural products including mono- and oligosaccharides, such as proteoglycans, glycoproteins, glycolipids, and antibiotics, are now recognized as important biological substances. A large number of recent biological studies on these glycomolecules at the molecular level have shed light on the biological significance of their carbohydrate parts (glycons) in molecular recognition for the transmission of biological information, and it was found that carbohydrates play very important roles in many biological events. Additionally, some glycomolecules are being used as new functional materials.2 For example, there is great hope that certain alkyl glycosides can be employed as biodegradable surfactants. Therefore, glycomolecules are worth developing in chemistry, biology, and materials science. With this stimulating background, the efficient synthesis of not only the carbohydrate itself but also carbohydrate-containing products is of particular interest both in academia and in industry. In this context, glycosylation, which is a crucial organic synthetic method to attach a sugar to other sugar moieties or other molecules (aglycons), is becoming more and more important in synthetic organic chemistry and carbohydrate chemistry, and considerable attention has been directed toward the development and efficiency of glycosylation methods.³ In this study, we focused on the iodoglycosylation⁴ of glycals⁵ using N-iodosuccinimide (NIS). 2-Iodoglycosides produced by iodoglycosylation can be converted to 2-deoxy sugars, and thus this method widely applies to natural product⁶ or oligosaccharide synthesis.⁷ Additionally, 2-iodoglycosides can be used to label glycosides in biology.8 Although iodoglycosylation is known as an efficient glycosylation methodology, it sometimes needs a reaction accelerator such as TfOH, which is a strong acid,9 to improve the efficiency of the glycosylation reaction (Figure 1, path a).

Figure 1. Activation of NIS by a protic acid (a) and a phosphorus compound (b).

Consequently, it cannot be applied to acid-sensitive substrates. Herein, we report an efficient iodoglycosylation utilizing PPh₃ as a novel and neutral reaction accelerator. Along with this reaction, we disclose a novel glycosylation of glycals using NIS and P(OPh)₃ as a combined activator to directly give 2deoxyglycosides. 10 To realize such an efficient iodoglycosylation, we built upon Ishihara's iodocyclization reaction, 11 in which NIS could be activated by a phosphorus compound as a nucleophilic promoter. In this study, the high reactivity of a phosphonium iodide cation intermediate generated from NIS and a phosphorus compound was well demonstrated (Figure 1, path b). In this context, we expected that use of a phosphorus compound combined with NIS would realize an effective iodoglycosylation of glycals under mild and neutral conditions.

RESULTS AND DISCUSSION

To investigate our hypothesis, we first selected tri-O-benzyl-Dglucal (1) and NIS as the glycosyl donor and activator, respectively. We then investigated the iodoglycosylation reaction of 1 with alcohol 2a using NIS and several phosphorus compounds under several conditions. These results are

Received: July 7, 2015 Published: September 16, 2015

9552

The Journal of Organic Chemistry

Table 1. Glycosylations of 1 and 2a using NIS and Several Phosphorus Compounds under Several Conditions

				yield (%) ^a				
entry	temp (°C)	time (h)	conditions	3a	4 a	5a	6	1
1	-40	12	NIS (2.0 equiv)	$45 \left(\alpha/\beta = 48/52 \right)$				37
2	-40	12	NIS (2.0 equiv), PBu ₃ (0.2 equiv)	$53 \left(\alpha/\beta = 71/29\right)$				40
3	-40	12	NIS (2.0 equiv), P(OMe) ₃ (0.2 equiv)	$42 \left(\alpha/\beta = 70/30\right)$		8	8	25
4	-40	12	NIS (2.0 equiv), P(OPh) ₃ (0.2 equiv)	$49 \left(\alpha/\beta = 65/35 \right)$		10	8	20
5	-40	12	NIS (2.0 equiv), PPh ₃ (0.2 equiv)	82 ($\alpha/\beta = 75/25$)				
6	-40	12	NIS (2.0 equiv), TfOH (0.2 equiv)	$86 \left(\alpha/\beta = 72/28\right)$				
7	-40	12	NIS (2.0 equiv), PPh ₃ (0.1 equiv)	$58 \left(\alpha/\beta = 68/32 \right)$				31
8	-40	12	NIS (2.0 equiv), PPh ₃ (0.4 equiv)	83 $\left(\alpha/\beta = 72/28\right)$				
9	-40	12	NIS (0.1 equiv), P(OPh) ₃ (0.2 equiv)		$39 \left(\alpha/\beta = 39/61\right)$			52
10	-40	12	NIS (0.1 equiv), PPh ₃ (0.2 equiv)					89
11	-20	12	NIS (0.1 equiv), P(OPh) ₃ (0.2 equiv)		$84 \left(\alpha/\beta = 45/55 \right)$			
12	0	12	NIS (0.1 equiv), P(OPh) ₃ (0.2 equiv)		$88 \left(\alpha/\beta = 48/52 \right)$			
13	room temp	3	NIS (0.1 equiv), P(OPh) ₃ (0.2 equiv)		$89 \left(\alpha/\beta = 65/35 \right)$			
14	room temp	3	NIS (0.15 equiv), P(OPh) ₃ (0.15 equiv)			58	31	
15	room temp	3	NIS (0.2 equiv), P(OPh) ₃ (0.1 equiv)			54	30	
$a_{\alpha/\beta}$ rat	ios were detern	nined by ¹ H	NMR analysis.					

Figure 2. Proposed mechanism of the iodoglycosylation of glycal using NIS and PPh₃.

summarized in Table 1. It was found that the use of PBu₃, $P(OMe)_3$, or $P(OPh)_3$ as an additive gave the corresponding glycoside 3a in moderate yields to a similar degree as the reaction with no phosphorus compound (entries 1–4). In addition, when $P(OMe)_3$ and $P(OPh)_3$ were employed as the reaction additives, non-negligible amounts of the Ferrier-type¹² rearranged byproducts 5a and 6^{13} were produced (entries 3 and 4). In contrast, when PPh_3 was used as the reaction additive, the reactivity of the reaction and the yield of 3a were dramatically increased. Thus, we found that the use of PPh_3 significantly promoted the iodoglycosylation using NIS just as

well as the use of TfOH, and the corresponding 2-deoxy-2-iodoglycosides were obtained in excellent yields (82%, $\alpha/\beta=75/25$) (entries 5 and 6). It was also confirmed that the α/β stereoselectivity of the glycosylation using NIS and PPh₃ was quite similar to that using NIS and TfOH. On the basis of these results, we next examined the amounts of PPh₃. When 0.1 equiv of PPh₃ was employed as the reaction accelerator, the yield of 3a was only moderate (entry 7). It was found that the use of 0.2 or 0.4 equiv of PPh₃ gave the best results (entries 5 and 8). Surprisingly, when 0.1 equiv of NIS and 0.2 equiv of P(OPh)₃ were employed as an activator and an additive, respectively, 2-

Table 2. Iodoglycosylations of 1 and Several Alcohols using NIS and PPh₃

Table 3. Iodoglycosylations of 1 and Acid-Sensitive Alcohols using NIS and TfOH or PPh₃

deoxyglycoside $4a^{14}$ was directly produced in 39% yield (entry 9). Although the reaction mechanism is different from the present glycosylation, the glycosylation using PPh₃-HBr to give 2-deoxyglycoside was reported by Mioskowski et al. In the reaction using 0.1 equiv of NIS and 0.2 equiv of PPh₃, the glycosylation did not proceed at all (entry 10). Moreover, the glycosylation of 1 and 2a using 0.1 equiv of NIS and 0.2 equiv of P(OPh)₃ at warmer reaction temperatures afforded 4a in excellent yields (entries 11–13). Interestingly, 2-deoxyglycoside 4a was not obtained by the glycosylation reaction using 0.15 equiv of NIS and 0.15 equiv of P(OPh)₃ or by using 0.2 equiv of NIS and 0.1 equiv of P(OPh)₃, and only the

rearranged byproducts 5a and 6 were produced as principal products in those cases (entries 14 and 15).

With these interesting and favorable results in hand, we propose the reaction mechanism of the present iodoglycosylation reaction using NIS and PPh₃ as shown in Figure 2. First, a reactive phosphonium iodide cation is generated from NIS and PPh₃ by nucleophilic activation of PPh₃, which then continuously reacts with glycal, the glycosyl donor. As a result, a glycosyl iodonium cation intermediate is generated. Finally, the corresponding 2-deoxy-2-iodoglycoside is produced by nucleophilic addition of the alcohol to the cation intermediate. Additionally, PPh₃ behaves catalytically and is recycled during the reaction.

 $^{^{}a}\alpha/\beta$ ratios were determined by ^{1}H NMR analysis.

 $^{^{}a}\alpha/\beta$ ratios were determined by ^{1}H NMR analysis.

The Journal of Organic Chemistry

a) BnO BnO + ROD
$$\frac{\text{NIS (0.1 eq.), P(OPh)}_3 (0.2 eq.)}{\text{rt, 3 h, CH}_2\text{Cl}_2 (0.1 M)}$$

BnO R1 BnO R1 BnO R1 BnO R2 BnO R3 BnO R3

ROD	Yield (%)		
	8+9+10 (ratio ^[a])	11+12+13 (ratio ^[a])	
Cyclohexanol-d ₁₂ (7)	68 (8/9/10 = 11/71/18)	16 (11/12/13 = 15/69/16)	

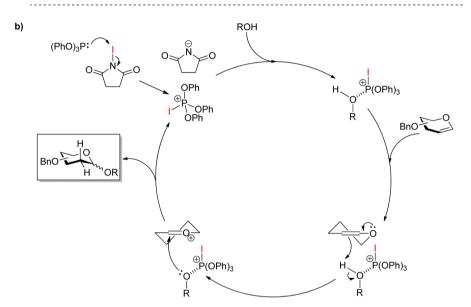
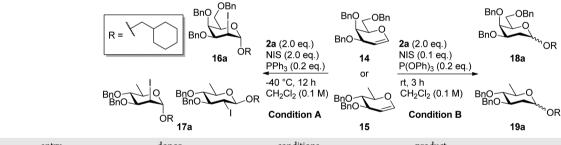


Figure 3. Mechanistic study (a) and proposed mechanism (b) of the glycosylation using NIS and P(OPh)₃.

Accordingly, we next examined the generality of the present iodoglycosylation method using primary alcohols 2b,c, secondary chain alcohols 2d,e, and cyclic secondary alcohols 2f,g as glycosyl acceptors. These results are summarized in Table 2. In all cases, we found that the corresponding glycosides 3b-g as well as 3a were obtained in high yields with α -stereoselectivities by the glycosylations using NIS and PPh₃ as a reaction accelerator at low temperature (-40 °C).


Furthermore, we investigated the iodoglycosylation of 1 with acid-sensitive alcohols 2h–l by utilizing TfOH or PPh $_3$ as a reaction accelerator and compared these results (Table 3). Although iodoglycosylation of 2h,i,k with TfOH gave only a complex mixture, it was found that the use of PPh $_3$ promoted iodoglycosylations effectively to give the corresponding 2-deoxy-2-iodoglycosides 3h,i,k in good yields (entries 1–4, 7, and 8). Similarly, when 2j,l were employed as glycosylacceptors, the product yields significantly increased by using PPh $_3$ as a reaction accelerator in comparison with the additive of TfOH (entries 5, 6, 9, and 10). These results clearly indicated that the iodoglycosylation using PPh $_3$ effectively proceeded under mild conditions and demonstrated the usefulness of PPh $_3$ as a reaction accelerator for iodoglycosylation using NIS.

We performed a mechanistic study on the glycosylation reaction using NIS and P(OPh)3, which directly produced 2deoxyglycoside in Table 1 (Figure 3a). When deuterated alcohol 7 was employed as a glycosyl acceptor, 2-deoxyglycosides 8, 9, 11, and 12, which were deuterated at the C-2 position, were produced in high yields. These results clearly indicated that glycosyl donor 1 was protonated by the glycosyl acceptor, alcohol 7, at the C-2 position. On the basis of these experimental results, we propose a reaction mechanism for the glycosylation as shown in Figure 3b. First, a phosphonium iodide cation is generated from NIS and P(OPh)₃ by nucleophilic addition of P(OPh)3. The unoccupied electron orbital of the phosphorus atom is activated by the electronwithdrawing effect of the phenoxy groups to accept two electrons from the alcohol, the glycosyl acceptor. After the coordination of the glycosyl acceptor to the phosphorus atom, the proton of the glycosyl acceptor activates the glycosyl donor. As a result of the reaction, an oxonium cation intermediate is generated. Finally, a glycosidic bond is formed due to the nucleophilic addition of the aglycon portion to the oxonium cation intermediate. Additionally, the phosphonium iodide cation intermediate behaves catalytically and is recycled during the reaction. Furthermore, an excess amount of P(OPh)₃ with regard to NIS decreases the Lewis acidity of the phosphonium The Journal of Organic Chemistry

Table 4. Glycosylation Reaction of 1 and Several Alcohols using NIS and P(OPh)₃

 $^{a}\alpha/\beta$ ratios were determined by ^{1}H NMR analysis. ^{b}T his reaction was performed at 40 $^{\circ}C$. $^{c}0.5$ equiv of alcohol was used.

Table 5. Glycosylations using 2a and 14 or 15 under Conditions A and B

entry	donor	conditions	product	yield (%) ^a
1	14	A	16a	88 (α only)
2	15	A	17a	$89 \ (\alpha/\beta = 72/28)$
3	14	В	18a	91 $(\alpha/\beta = 71/29)$
4	15	В	19a	$86 \left(\alpha/\beta = 59/41\right)$

 $^{a}\alpha/\beta$ ratios were determined by ^{1}H NMR analysis.

iodide cation intermediate to prevent the production of the rearranged byproducts 5a and 6.

Next, we examined the generality of the glycosylation method by catalytic amounts of NIS and $P(OPh)_3$ using several alcohols. These results are summarized in Table 4. It was found that all glycosylations of 2b-h,j,l as well as 2a with 1 using NIS and $P(OPh)_3$ proceeded smoothly to give the corresponding 2-deoxyglycosides 4b-d, 14 4e,f, 14 and 4g,h,j,l directly in high yields with α -stereoselectivities.

Finally, we examined the generality of the glycosylation method using 2a and other glycals, tri-O-benzyl-D-galactal (14) and di-O-benzyl-6-deoxy-D-glucal (15) (Table 5). Under conditions A, which employ NIS and PPh₃, the corresponding 2-deoxy-2-iodoglycosides 16a and 17a were obtained from 14 and 15, respectively, in high yields (entries 1 and 2). In addition, it was found that the iodoglycosylation reaction of 2a

and acceptor **14** gave only the α isomer of **16a** with complete α -stereoselectivity. In contrast, under conditions B, which use NIS and P(OPh)₃, the corresponding 2-deoxyglycosides **18a** and **19a** were obtained from **14** and **15**, respectively, in high yields (entries 3 and 4).

CONCLUSION

In conclusion, we have developed novel glycosylation reactions using NIS and PPh_3 or $P(OPh)_3$. We found that the use of NIS and PPh_3 as a reaction accelerator realized effective iodoglycosylations under mild conditions to provide 2-deoxy-2-iodoglycosides in high yields. On the other hand, the use of NIS and $P(OPh)_3$ was proven to be effective for the glycosylation to directly afford 2-deoxy sugars in high yields. These reactions, which can produce both 2-iodo- and 2-deoxyglycosides individually by changing the phosphorus

compound additive, are very attractive and provide new insights into the glycosylation reaction. Furthermore, although the present glycosylation methods could not simply be applied to glycals bearing acetate protecting groups, they should find wide application in the synthesis of 2-iodo- and 2-deoxyglycosides, which frequently appear as biologically important glycons.

■ EXPERIMENTAL SECTION

General Procedure for lodoglycosylations of Glucal 1 and Alcohols 2 using NIS and PPh3. To a solution of glycosyl donor 1 (25.0 mg, 60.0 μ mol) in dry CH2Cl2 (0.600 mL) were added glycosyl acceptor 2 (2.0 equiv, 120 μ mol) and PPh3 (0.2 equiv, 12.0 μ mol) at room temperature under an Ar atmosphere. After it was stirred at the same temperature for 20 min, the reaction mixture was cooled to -40 °C, and then NIS (2.0 equiv, 120 μ mol) was added. After the reaction mixture was stirred for 12 h, the reaction was quenched by addition of a mixture of 50 wt % Na2S2O3 and saturated aqueous NaHCO3 (1/1, 2 mL) at -40 °C. The resulting mixture was extracted with CHCl3 (2 mL \times 3). The combined organic layers were washed with brine (2 mL), dried over Na2SO4, and concentrated in vacuo. Purification of the residue by flash column chromatography (10 g) gave the corresponding glycosides as a α/β mixture.

General Procedure for Glycosylations of Glucal 1 and Alcohols 2 using NIS and P(OPh)₃. To a solution of glycosyl acceptor 2 (2.0 equiv, 120 μ mol) in dry CH₂Cl₂ (0.600 mL) were added NIS (0.1 equiv, 6.0 μ mol) and P(OPh)₃ (0.2 equiv, 12.0 μ mol) at room temperature under Ar atmosphere. After the reaction mixture was stirred at the same temperature for 20 min, glycosyl donor 1 (25.0 mg, 60.0 μ mol) was added. After the reaction mixture was stirred for 3 h, the reaction was quenched by addition of a mixture of 50 wt % aqueous Na₂S₂O₃ and saturated aqueous NaHCO₃ (1/1, 2 mL). The resulting mixture was extracted with CHCl₃ (2 mL × 3). The combined organic layer was washed with brine (2 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (10 g) gave the corresponding glycosides as a α/β mixture.

Cyclohexylmethyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo- α -D-gluco-pyranoside ($3a\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3a\alpha$ (23.5 mg, 60%): colorless syrup; R_f 0.48 (8/1 nhexane/EtOAc); $[\alpha]^{25}_{D}$ +14.8° (c 0.91, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.24 (13H, m), 7.17–7.15 (2H, m), 5.17 (1H, br s), 4.85 and 4.49 (2H, ABq, J = 10.6 Hz), 4.71 and 4.53 (2H, ABq, J = 10.6 Hz) 12.4 Hz), 4.70 and 4.53 (2H, ABq, J = 12.4 Hz), 4.48 (1H, dd, J = 1.2and 4.3 Hz), 3.90 (1H, dd, I = 8.6 and 9.8 Hz), 3.84 (1H, ddd, I = 1.5, 4.3, and 9.8 Hz), 3.78 (1H, dd, J = 4.3 and 10.9 Hz), 3.69 (1H, dd, J =1.5 and 10.9 Hz), 3.45 (1H, dd, J = 6.6 and 9.5 Hz), 3.31 (1H, dd, J =4.3 and 8.6 Hz), 3.18 (1H, dd, I = 6.1 and 9.2 Hz), 1.71–1.65 (6H, m), 1.26-1.10 (3H, m), 0.93-0.84 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.7, 128.4, 128.3 × 2, 128.1 × 2, 127.8, 127.7, 127.6, 127.4, 101.5, 76.0, 75.3, 73.6, 73.3, 72.1, 71.0, 68.9, 37.8, 33.8, 30.0, 29.8, 26.5, 25.8, 25.7, 22.6, 14.1; HRMS (ESI-TOF) *m/z* $[M + Na]^+$ calcd for $C_{34}H_{41}IO_5Na$ 679.1896, found 679.1900.

Cyclohexylmethyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo-β-D-glucopyranoside (3ab). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3a\beta$ (9.2 mg, 23%): white solid; R_f 0.42 (8/1 *n*-hexane/EtOAc); $[\alpha]^2$ +25.4° (c 1.33, CHCl₃); mp 66-67 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.41 (2H, m), 7.34-7.27 (11H, m), 7.20-7.17 (2H, m), 4.98 and 4.85 (2H, ABq, J = 10.1 Hz), 4.79 and 4.57 (2H, ABq, J = 10.9Hz), 4.61 and 4.55 (2H, ABq, J = 12.0 Hz), 4.50 (1H, d, J = 8.9 Hz), 3.92 (1H, dd, J = 8.9 and 10.9 Hz), 3.76-3.68 (4H, m), 3.60 (1H, dd, J = 8.6 and 9.7 Hz), 3.49 (1H, ddd, J = 2.3, 4.6, and 9.7 Hz), 3.29 (1H, dd, J = 7.2 and 9.2 Hz), 1.92–1.61 (6H, m), 1.29–1.13 (3H, m), 1.02–0.93 (2H, m); 13 C NMR (125 MHz, CDCl₃) δ 138.1, 137.7, 128.5, 128.4×2 , 128.1, 127.9, 127.7, 127.6, 103.3, 85.9, 79.7, 76.0, 75.5, 75.2, 74.9, 73.5, 68.6, 37.8, 33.1, 30.1, 29.8, 26.6, 25.8 \times 2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{34}H_{41}IO_5Na$ 679.1896, found 679.1888.

n-Octyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo- α -D-glucopyranoside $(3b\alpha)$. The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3b\alpha$ (24.4 mg, 61%): colorless syrup; R_f 0.43 (8/1 n-hexane/EtOAc); $[\alpha]^{28}_{D}$ +11.6° (c 1.84, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42– 7.24 (13H, m), 7.17-7.14 (2H, m), 5.21 (1H, br s), 4.85 and 4.48 (2H, ABq, J = 10.6 Hz), 4.72 and 4.53 (2H, ABq, J = 12.0 Hz), 4.70 and 4.52 (2H, ABq, J = 11.5 Hz), 4.49 (1H, dd, J = 1.4 and 4.0 Hz), 3.90 (1H, dd, J = 8.6 and 9.8 Hz), 3.85 (1H, ddd, J = 1.8, 4.6, and 9.8 Hz), 3.79 (1H, dd, J = 4.6 and 10.9 Hz), 3.70 (1H, dd, J = 1.8 and 10.9 Hz), 3.64 (1H, dt, J = 6.9 and 9.4 Hz), 3.38 (1H, dt, J = 6.6 and 9.8 Hz), 3.32 (1H, dd, J = 4.0 and 8.6 Hz), 1.53–1.50 (2H, m), 1.30–1.24 (10H, m), 0.88 (3H, t, J = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ $138.4, 138.2, 137.8, 128.4, 128.3 \times 2, 128.1, 128.0, 127.8, 127.7, 127.6,$ 127.4, 101.3, 75.9, 75.3, 73.3, 72.1, 70.9, 68.9, 68.1, 33.8, 31.8, 29.4, 29.3, 29.2, 26.1, 22.6, 14.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₅H₄₅IO₅Na 695.2209, found 695.2206.

n-Octyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo-β-D-glucopyranoside (3bβ). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3bβ (11.5 mg, 28%): white solid; R_f 0.38 (8/1 n-hexane/EtOAc); $[\alpha]^{29}_D$ +26.4° (c 1.38, CHCl₃); mp 60–61°C; ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.42 (2H, m), 7.36–7.26 (11H, m), 7.19–7.17 (2H, m), 4.98 and 4.85 (2H, ABq, J = 10.3 Hz), 4.80 and 4.56 (2H, ABq, J = 10.9 Hz), 4.61 and 4.55 (2H, ABq, J = 12.3 Hz), 4.52 (1H, d, J = 8.9 Hz), 3.92 (1H, dd, J = 8.9 and 10.9 Hz), 3.89 (1H, dt, J = 6.6 and 9.5 Hz), 3.76–3.68 (3H, m), 3.60 (1H, dd, J = 8.6 and 9.8 Hz), 3.55–3.48 (2H, m), 1.69–1.59 (2H, m), 1.33–1.25 (10H, m), 0.88 (3H, t, J = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 137.7, 128.5, 128.4 × 2, 128.1, 127.9, 127.8, 127.6, 103.2, 85.9, 79.7, 75.5, 75.2, 74.9, 73.5, 70.4, 68.6, 33.2, 31.8, 29.4, 29.3, 29.2, 26.0, 22.7, 14.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₅H₄₅IO₅Na 695.2209, found 695.2216.

Methyl 2,3,4-Tri-O-benzyl-6-O-(3',4',6'-tri-O-benzyl-2'-deoxy-2' $iodo-\alpha-D$ -glucopyranosyl)- α -D-glucopyranoside ($3c\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, nhexane/EtOAc 3/1) to give compound 3cα (44.5 mg, 74%): colorless syrup; R_f 0.41 (3/1 *n*-hexane/EtOAc); $[\alpha]^{27}_D$ +36.4° (*c* 2.13, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.18 (28H, m), 7.13–7.11 (2H, m), 5.27 (1H, br s), 4.99 and 4.80 (2H, ABq, J = 10.6 Hz), 4.87 and 4.45 (2H, ABq, J = 10.9 Hz), 4.85 and 4.47 (2H, ABq, J = 10.6 Hz), 4.79 and 4.69 (2H, ABq, J = 12.3 Hz), 4.69 and 4.49 (2H, ABq, J =12.3 Hz), 4.64 and 4.41 (2H, ABq, J = 12.0 Hz), 4.59 (1H, d, J = 3.4Hz), 4.49 (1H, dd, J = 1.2 and 4.3 Hz), 3.98 (1H, dd, J = 9.2 and 9.2 Hz), 3.89 (1H, dd, I = 9.2 and 9.5 Hz), 3.83 (1H, dd, I = 4.3 and 11.5 Hz), 3.75 (1H, ddd, J = 1.5, 4.3, and 9.5 Hz), 3.69 (1H, ddd, J = 1.8, 4.3, and 9.8 Hz), 3.64 (1H, dd, J = 4.3 and 10.9 Hz), 3.58 (1H, dd, J =1.5 and 11.5 Hz), 3.54 (1H, dd, J = 1.8 and 10.9 Hz), 3.50 (1H, dd, J = 1.83.4 and 9.2 Hz), 3.41 (1H, dd, J = 9.2 and 9.8 Hz), 3.32 (3H, s), 3.24 (1H, dd, J = 4.3 and 9.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.6, $138.4, 138.3, 138.1, 138.0, 137.4, 128.5, 128.4 \times 2, 128.3, 128.2, 128.1,$ 128.0×2 , 127.9×2 , 127.8, 127.6×3 , 127.5, 127.4×2 , 101.7, 97.9, 82.1, 79.9, 77.4, 76.2, 75.8, 75.1, 74.9, 73.3, 73.2, 72.2, 70.7, 69.6, 68.6, 66.1, 55.1, 33.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₅₅H₅₉IO₁₀Na 1029.3051, found 1029.3060.

Methyl 2,3,4-Tri-O-benzyl-6-O-(3',4',6'-tri-O-benzyl-2'-deoxy-2'*iodo-β-D-glucopyranosyl*)- α -*D-glucopyranoside* (**3c** β). The anomeric mixture was purified by flash column chromatography (10 g, nhexane/EtOAc 3/1) to give compound $3c\beta$ (4.4 mg, 7%): white solid; $R_f 0.38 (3/1 \text{ n-hexane/EtOAc}); [\alpha]^{25}_D +46.3^{\circ} (c 0.84, CHCl_3); mp$ 121–122 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.40 (2H, m), 7.37-7.22 (26H, m), 7.20-7.17 (2H, m), 4.99 and 4.82 (2H, ABq, J =10.6 Hz), 4.96 and 4.82 (2H, ABq, J = 10.6 Hz), 4.96 and 4.89 (2H, ABq, J = 10.9 Hz), 4.78 and 4.56 (2H, ABq, J = 11.2 Hz), 4.64 (1H, d, J = 3.5 Hz), 4.57 and 4.52 (2H, ABq, J = 12.1 Hz), 4.53 (1H, d, J = 8.9Hz), 4.12-4.10 (1H, m), 4.02-3.99 (1H, m), 3.96 (1H, dd, J = 8.9and 10.6 Hz), 3.78-3.65 (6H, m), 3.58 (1H, dd, J = 3.5 and 9.2 Hz), 3.49 (1H, ddd, J = 1.5, 4.3, and 9.8 Hz), 3.39 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 138.6, 138.2, 138.0, 137.6, 128.5, 128.4 × 2, 128.3, 128.1×3 , 127.9×2 , 127.7, 127.6, 103.0, 98.2, 85.7, 82.3, 79.7, $79.6, 75.8, 75.5, 75.4, 75.1, 74.9, 73.4 \times 2, 69.5, 68.6, 68.0, 55.3, 32.5;$

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{55}H_{59}IO_{10}Na$ 1029.3051, found 1029.3045.

Isopropyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo-α-D-glucopyranoside (3dα). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3dα (22.1 mg, 61%): colorless syrup; R_f 0.49 (8/1 n-hexane/EtOAc); $[\alpha]^{25}_D$ +13.5° (c 1.50, CHCl₃); 1 H NMR (500 MHz, CDCl₃) δ 7.42—7.41 (2H, m), 7.38—7.26 (11H, m), 7.16—7.14 (2H, m), 5.32 (1H, br s), 4.84 and 4.47 (2H, ABq, J = 10.6 Hz), 4.72 and 4.52 (2H, ABq, J = 12.0 Hz), 4.70 and 4.52 (2H, ABq, J = 10.6 Hz), 4.48 (1H, dd, J = 1.4 and 4.0 Hz), 3.93—3.88 (4H, m), 3.80 (1H, dd, J = 4.9 and 10.9 Hz), 3.69 (1H, dd, J = 2.0 and 10.9 Hz), 3.34 (1H, m), 1.17 (3H, d, J = 6.3 Hz), 1.12 (3H, d, J = 6.3 Hz); 13 C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.8, 128.4, 128.3, 128.2, 128.1, 127.9, 127.7 × 2, 127.6, 127.4, 99.5, 76.0, 75.3, 73.3, 72.1, 70.8, 69.9, 68.9, 34.5, 23.2, 21.5; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₀H₃₅IO₅Na 625.1427, found 625.1439.

Isopropyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo-β-p-glucopyrano-side (3dβ). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3dβ (10.4 mg, 29%): white solid; $R_{\rm f}$ 0.46 (8/1 n-hexane/EtOAc); $[\alpha]^{26}_{\rm D}$ +32.1° (c 1.06, CHCl₃); mp 91–92 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (2H, m), 7.36–7.26 (11H, m), 7.20–7.18 (2H, m), 4.98 and 4.85 (2H, ABq, J = 10.3 Hz), 4.80 and 4.60 (2H, ABq, J = 10.6 Hz), 4.61 and 4.55 (2H, ABq, J = 12.3 Hz), 4.59 (1H, d, J = 8.9 Hz), 3.98 (1H, m), 3.90 (1H, dd, J = 8.9 and 10.9 Hz), 3.75–3.71 (2H, m), 3.68 (1H, dd, J = 4.9 and 10.9 Hz), 3.58 (1H, dd, J = 8.6 and 9.7 Hz), 3.50 (1H, ddd, J = 2.1, 4.9, and 9.7 Hz), 1.28 (3H, d, J = 6.3 Hz), 1.26 (3H, d, J = 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.1, 137.7, 128.5, 128.4, 128.3, 128.1, 127.9, 127.7, 127.6, 102.0, 86.1, 79.7, 75.4, 75.2, 74.9, 73.4, 72.9, 68.7, 34.1, 23.4, 21.7; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₀H₃₅IO₅Na 625.1427, found 625.1435.

1-((tert-Butyldiphenylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- α -D-glucopyranoside ($3e\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, nhexane/EtOAc 8/1) to give compound $3e\alpha$ (35.5 mg, 69%): colorless syrup; $R_f 0.40 (8/1 \text{ n-hexane/EtOAc}); [\alpha]^{25}_D +23.7^{\circ} (c 1.12, CHCl_3);$ ¹H NMR (500 MHz, CDCl₃) δ 7.68–7.64 (4H, m), 7.45–7.27 (19H, m), 7.17-7.14 (2H, m), 5.53 (1H, br s), 4.85 and 4.48 (2H, ABq, J =10.6 Hz), 4.73 and 4.53 (2H, ABq, J = 12.0 Hz), 4.65 and 4.46 (2H, ABq, J = 11.5 Hz), 4.46 (1H, dd, J = 1.1 and 4.3 Hz), 3.98 (1H, ddd, J = 1.1= 1.7, 4.6, and 10.0 Hz), 3.95-3.90 (2H, m), 3.81 (1H, dd, J = 4.6 and 10.9 Hz), 3.71 (1H, dd, J = 1.7 and 10.9 Hz), 3.57 (1H, dd, J = 6.9 and 10.9 Hz), 3.53 (1H, dd, I = 4.0 and 10.9 Hz), 3.32 (1H, dd, I = 4.3 and 8.6 Hz), 1.10 (3H, d, J = 6.6 Hz), 1.06 (9H, s); ¹³C NMR (125 MHz, $CDCl_3$) δ 138.4, 138.2, 137.8, 135.5, 133.4, 133.3, 129.7, 128.4, 128.3 \times 2, 128.1, 127.9, 127.7 \times 3, 127.6, 127.4, 101.9, 76.1, 75.4, 75.3, 73.4, 72.3, 70.7, 68.9, 67.9, 33.9, 26.8, 19.2, 17.8; HRMS (ESI-TOF) *m/z* $[M + Na]^+$ calcd for $C_{46}H_{53}IO_6SiNa$ 879.2552, found 879.2546.

1-((tert-Butyldiphenylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- β -D-glucopyranoside ($3e\beta$). The anomeric mixture was purified by flash column chromatography (10 g, nhexane/EtOAc 8/1) to give compound $3e\beta$ (11.2 mg, 22%): colorless syrup; R_f 0.38 (8/1 *n*-hexane/EtOAc); $[\alpha]^{26}_D$ +24.1° (*c* 1.32, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.66 (5H, m), 7.42–7.22 (18H, m), 7.18-7.16 (2H, m), 4.96 and 4.85 (2H, ABq, J = 10.3 Hz), 4.77and 4.56 (2H, ABq, J = 10.6 Hz), 4.54 (1H, d, J = 8.9 Hz), 4.50 and 4.39 (2H, ABq, J = 12.3 Hz), 3.93-3.87 (2H, m), 3.84 (1H, dd, J = 8.9 and 10.6 Hz), 3.68 (1H, dd, I = 8.6 and 10.6 Hz), 3.64 (1H, dd, I = 4.3and 10.9 Hz), 3.60-3.55 (2H, m), 3.53 (1H, dd, J = 1.8 and 10.9 Hz), 3.38 (1H, ddd, J = 1.8, 4.3, and 11.5 Hz), 1.32 (3H, d, J = 6.0 Hz), 1.05(9H, s); 13 C NMR (125 MHz, CDCl₃) δ 138.1, 137.8 × 2, 135.7, 135.6, 133.8, 133.6, 129.6, 128.4 \times 2, 128.3, 128.1, 127.9, 127.7 \times 2, $127.6,\ 127.5,\ 102.0,\ 86.0,\ 79.5,\ 76.5,\ 75.5,\ 75.1,\ 74.9,\ 73.5,\ 68.5,\ 67.3,$ 33.8, 26.9, 19.3, 16.8; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₆H₅₃IO₆SiNa 879.2552, found 879.2549.

Cyclohexyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo- α -D-glucopyranoside ($3f\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3f\alpha$ (25.7 mg, 67%): colorless syrup; R_f 0.47 (8/1 n-hexane/EtOAc);

[α]²⁵_D +20.3° (c 1.95, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.41 (2H, m), 7.38–7.24 (11H, m), 7.18–7.15 (2H, m), 5.35 (1H, br s), 4.85 and 4.47 (2H, ABq, J = 10.6 Hz), 4.72 and 4.52 (2H, ABq, J = 11.7 Hz), 4.70 and 4.52 (2H, ABq, J = 10.4 Hz), 4.47 (1H, dd, J = 1.7 and 4.3 Hz), 3.96 (1H, ddd, J = 1.7, 4.3, and 10.0 Hz), 3.91 (1H, dd, J = 8.3 and 10.0 Hz), 3.80 (1H, dd, J = 4.3 and 10.9 Hz), 3.70 (1H, dd, J = 1.7 and 10.9 Hz), 3.59 (1H, m), 3.35 (1H, dd, J = 4.3 and 8.3 Hz), 1.82 (2H, br s), 1.68 (2H, br s), 1.50 (1H, br s), 1.37–1.17 (5H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.8, 128.4, 128.3, 128.2, 128.1, 128.0, 127.7 × 2, 127.6, 127.4, 99.4, 76.1, 75.7, 75.3, 73.3, 72.1, 70.9, 69.0, 34.7, 33.2, 31.5, 25.5, 24.0, 23.8; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₃H₃₉IO₅Na 665.1740, found 665.1730.

Cyclohexyl 3,4,6-*Tri-O-benzyl-2-deoxy-2-iodo-β-D-glucopyrano-side* (3*fβ*). The anomeric mixture was purified by flash column chromatography (10 g, *n*-hexane/EtOAc 8/1) to give compound 3*fβ* (9.0 mg, 23%): white solid; R_f 0.43 (8/1 n-hexane/EtOAc); $[\alpha]^{27}_D$ +15.2° (c 1.15, CHCl₃); mp 83–85 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (2H, m), 7.36–7.25 (11H, m), 7.21–7.19 (2H, m), 4.98 and 4.85 (2H, ABq, J = 10.0 Hz), 4.80 and 4.58 (2H, ABq, J = 10.6 Hz), 4.64 (1H, d, J = 8.9 Hz), 4.61 and 4.56 (2H, ABq, J = 12.3 Hz), 3.92 (1H, dd, J = 8.9 and 10.6 Hz), 3.75–3.65 (4H, m), 3.58 (1H, dd, J = 8.9 and 9.8 Hz), 3.50 (1H, ddd, J = 2.0, 4.9, and 9.8 Hz), 1.95 (2H, br s), 1.83–1.76 (2H, m), 1.53–1.21 (6H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.1, 137.8 × 2, 128.5, 128.4, 128.3, 128.1, 127.9, 127.7, 127.6, 101.7, 86.1, 79.7, 78.1, 75.4, 75.2, 74.9, 73.4, 68.7, 34.1, 33.4, 31.4, 25.6, 24.0, 23.8; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{33}H_{39}IO_5Na$ 665.1740, found 665.1737.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- α -D-glucopyranoside ($3g\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3g\alpha$ (27.1 mg, 65%): colorless syrup; R_f 0.42 (8/1 *n*-hexane/EtOAc); $[\alpha]^{27}_{D}$ +15.2° (*c* 1.15, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.22 (13H, m), 7.18–7.16 (2H, m), 5.26 (1H, br s), 4.86 and 4.48 (2H, ABq, J = 10.6 Hz), 4.71 and 4.51 (2H, ABq, J = 12.1 Hz), 4.70 and 4.57 (2H, ABq, J = 11.5 Hz), 4.40 (1H, dd, J = 1.5 and 4.1 Hz), 4.03 (1H, ddd, J = 2.0, 4.9, and 9.7 Hz), 3.89 (1H, dd, J = 8.9 and 9.7 Hz), 3.79 (1H, dd, J = 4.9 and 10.9 Hz), 3.68 (1H, dd, I = 2.0 and 10.9 Hz), 3.30 (2H, m), 2.17 (1H, br d), 1.95-1.89 (1H, m), 1.36–1.26 (2H, m), 1.19–1.12 (1H, m), 0.88 (3H, d, J = 7.2 Hz), 0.82 (3H, d, J = 6.6 Hz), 0.72 (3H, d, J = 6.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.2, 137.9, 137.8, 128.5, 128.4, 128.0 \times 2, 127.9, 127.8, 127.7, 127.6, 100.4, 86.2, 79.7, 77.9, 75.3, 75.1, 75.0, 47.7, 40.3, 34.3, 34.1, 31.5, 25.0, 23.1, 22.3, 21.0, 15.8; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{37}H_{47}IO_5Na$ 721.2366, found

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- β -D-glucopyranoside (**3g** β). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3g\beta$ (7.7 mg, 18%): white solid; R_f 0.39 (8/1 *n*-hexane/EtOAc); $[\alpha]^{25}_{D}$ +15.2° (*c* 1.15, CHCl₃); mp 98–99 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (2H, m), 7.36–7.26 (11H, m), 7.22-7.20 (2H, m), 4.98 and 4.86 (2H, ABq, J = 10.4 Hz), 4.80 and 4.61 (2H, ABq, J = 10.9 Hz), 4.60 and 4.53 (2H, ABq, J = 12.0 Hz), 4.61 (1H, d, J = 8.9 Hz), 3.88 (1H, dd, J = 8.9 and 10.9 Hz), 3.75– 3.71 (2H, m), 3.69 (1H, dd, I = 1.7 and 10.9 Hz), 3.62 (1H, dd, I = 8.9and 9.7 Hz), 3.52–3.45 (2H, m), 2.32–2.27 (1H, m), 2.15 (1H, br d), 1.65 (2H, br d), 0.95 (3H, d, J = 6.6 Hz), 0.89 (3H, d, J = 6.9 Hz), 0.79 (3H, d, I = 6.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.7, 128.4, 128.3, 128.2, 128.1×2 , 127.8, 127.7, 127.6, 127.4, 103.1, 81.9, 76.2, 75.3, 73.3, 72.2, 71.1, 69.0, 48.4, 42.5, 34.5, 34.2, 31.5, 25.8, 23.2, 22.2 × 2, 21.0, 16.3; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₇H₄₇IO₅Na 721.2366, found 721.2374.

(35)-2,2-Dimethyl-1,3-dioxolane-4-methyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo-α-D-glucopyranoside (3hα). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 3/1) to give compound 3hα (24.4 mg, 60%): colorless syrup; $R_{\rm f}$ 0.40 (3/1 n-hexane/EtOAc); $[\alpha]^{27}_{\rm D}$ +13.4° (c 1.81, CHCl₃); 1 H NMR (500 MHz, CDCl₃) δ 7.42–7.24 (13H, m), 7.16–7.14 (2H, m), 5.28 (1H, br s), 4.85 and 4.48 (2H, ABq, J = 10.6 Hz), 4.70 and 4.50 (2H,

ABq, J=12.1 Hz), 4.69 and 4.53 (2H, ABq, J=12.3 Hz), 4.58 (1H, dd, J=1.4 and 4.3 Hz), 4.24 (1H, m), 4.01 (1H, dd, J=6.6 and 8.3 Hz), 3.89 (1H, dd, J=8.3 and 9.8 Hz), 3.85 (1H, ddd, J=1.7, 4.6, and 9.8 Hz), 3.77 (1H, dd, J=4.6 and 10.9 Hz), 3.70 (1H, dd, J=1.7 and 10.9 Hz), 3.66 (1H, dd, J=4.6 and 10.9 Hz), 3.62 (1H, dd, J=6.6 and 8.3 Hz), 3.49 (1H, dd, J=6.3 and 10.3 Hz), 3.31 (1H, dd, J=4.3 and 8.3 Hz), 1.39 (3H, s), 1.35 (3H, s); 13 C NMR (125 MHz, CDCl₃) δ 138.3, 138.2, 137.7, 128.4, 128.3 × 2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 109.7, 101.8, 75.8, 75.2, 74.5, 73.4, 72.3, 70.9, 68.9, 68.8, 66.4, 33.0, 26.7, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{33}H_{39}IO_7Na$ 697.1638, found 697.1642.

(3S)-2,2-Dimethyl-1,3-dioxolane-4-methyl 3',4',6'-Tri-O-benzyl-2-deoxy-2-iodo- β -D-glucopyranoside (**3h** β). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 3/1) to give compound $3h\beta$ (10.4 mg, 26%): colorless syrup; R_f 0.40 $(3/1 \text{ } n\text{-hexane/EtOAc}); [\alpha]^{26}_{D} + 32.5^{\circ} (c 0.86, CHCl_3); {}^{1}H NMR$ (500 MHz, CDCl₃) δ 7.43–7.41 (2H, m), 7.37–7.27 (11H, m), 7.19– 7.17 (2H, m), 4.97 and 4.85 (2H, ABq, J = 10.1 Hz), 4.80 and 4.56 (2H, ABq, J = 10.6 Hz), 4.61 and 4.53 (2H, ABq, J = 12.0 Hz), 4.57 (1H, d, J = 8.9 Hz), 4.32 (1H, m), 4.10 (1H, dd, J = 6.3 and 8.3 Hz), 3.97 (2H, m), 3.90 (1H, dd, J = 8.9 and 10.9 Hz), 3.71 (3H, m), 3.62 (1H, dd, I = 8.6 and 9.8 Hz), 3.53 (1H, dd, I = 7.2 and 9.8 Hz), 3.50 (1H, ddd, J = 2.3, 4.0, and 9.8 Hz), 1.44 (3H, s), 1.36 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 137.7, 128.5, 128.4 × 2, 128.1, 127.9×2 , 127.8×2 , 127.7, 109.4, 103.4, 85.7, 79.5, 75.6, 75.2, 75.0, 74.0, 73.5, 70.6, 68.4, 67.1, 32.5, 27.0, 25.3; HRMS (ESI-TOF) m/z[M + Na]⁺ calcd for C₃₃H₃₉IO₇Na 697.1638, found 697.1632.

1-((Triethylsilyl)oxy)-4-butyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'iodo- α -D-glucopyranoside (3i α). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $3i\alpha$ (22.0 mg, 49%): colorless syrup; R_f 0.39 (8/1 nhexane/EtOAc); $[\alpha]^{25}_{D}$ +9.27° (c 1.02, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.24 (13H, m), 7.16–7.14 (2H, m), 5.21 (1H, br s), 4.84 and 4.48 (2H, ABq, J = 10.6 Hz), 4.72 and 4.52 (2H, ABq, J =11.9 Hz), 4.69 and 4.51 (2H, ABq, J = 11.6 Hz), 4.50 (1H, dd, J = 1.2and 4.3 Hz), 3.90 (1H, dd, J = 8.6 and 9.8 Hz), 3.84 (1H, ddd, J = 1.8, 4.6, and 9.8 Hz), 3.79 (1H, dd, J = 4.6 and 10.9 Hz), 3.70–3.65 (2H, m), 3.60 (2H, t, J = 6.0 Hz), 3.41 (1H, dt, J = 6.6 and 9.5 Hz), 3.32(1H, dd, J = 4.3 and 8.6 Hz), 1.62–1.51 (4H, m), 0.95 (9H, t, J = 7.8Hz), 0.59 (6H, q, J = 7.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.4, 128.4, 128.3×2 , 128.1, 128.0, 127.8, 127.6×2 , 127.4, 101.4, 75.9, 75.2, 73.4, 72.1, 70.9, 68.9, 67.9, 62.4, 33.7, 29.5, 26.0, 6.79, 4.37; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₇H₅₁IO₆SiNa 769.2397, found 769.2374.

1-((Triethylsilyl)oxy)-4-butyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- β -D-glucopyranoside (3iβ). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3iβ (12.4 mg, 28%): colorless syrup; $R_{\rm f}$ 0.35 (8/1 n-hexane/EtOAc); [α]²⁵_D +24.5° (c 0.88, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (2H, m), 7.37–7.25 (11H, m), 7.19–7.17 (2H, m), 4.98 and 4.86 (2H, ABq, J = 10.3 Hz), 4.80 and 4.56 (2H, ABq, J = 10.9 Hz), 4.61 and 4.54 (2H, ABq, J = 12.3 Hz), 4.53 (1H, d, J = 8.9 Hz), 3.95–3.89 (2H, m), 3.75–3.65 (5H, m), 3.61 (1H, ddd, J = 8.6 and 9.8 Hz), 3.55 (1H, dt, J = 6.6 and 9.8 Hz), 3.49 (1H, ddd, J = 2.3, 4.3, and 9.8 Hz), 1.71–1.60 (4H, m), 0.96 (9H, t, J = 7.8 Hz), 0.60 (6H, q, J = 7.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 137.7, 128.5, 128.4 × 2, 128.3, 127.9 × 3, 127.8, 127.6, 103.1, 85.9, 79.6, 75.5, 75.2, 74.9, 73.5, 70.1, 68.6, 62.5, 33.1, 29.4, 25.9, 6.83, 4.41; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₇H₅₁IO₆SiNa 769.2397, found 769.2377.

1-((tert-Butyldimethylsilyl)oxy)-4-butyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo-α-D-glucopyranoside (3jα). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3jα (24.0 mg, 54%): colorless syrup; $R_{\rm f}$ 0.42 (8/1 n-hexane/EtOAc); $[\alpha]^{25}_{\rm D}$ +8.80° (c 1.90, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.25 (13H, m), 7.16–7.14 (2H, m), 5.21 (1H, br s), 4.85 and 4.48 (2H, ABq, J = 10.6 Hz), 4.72 and 4.52 (2H, ABq, J = 12.0 Hz), 4.70 and 4.51 (2H, ABq, J = 11.2 Hz), 4.49 (1H, dd, J = 1.2 and 4.0 Hz), 3.91 (1H, dd, J = 8.6 and 9.8 Hz), 3.84 (1H, ddd, J = 1.8, 4.6, and 9.8 Hz), 3.79 (1H, dd, J = 4.6 and 10.9 Hz),

3.70–3.65 (2H, m), 3.60 (2H, t, J = 6.3 Hz), 3.41 (1H, dt, J = 6.6 and 9.8 Hz), 3.32 (1H, dd, J = 4.0 and 8.6 Hz), 1.62–1.50 (4H, m), 0.89 (9H, s), 0.04 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.7, 128.4, 128.3 × 2, 128.1, 128.0, 127.8, 127.7, 127.6, 127.4, 101.4, 75.9, 75.3, 73.4, 72.1, 70.9, 68.9, 67.9, 62.8, 33.7, 29.4, 26.0, 18.3, -5.30; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{37}H_{51}IO_6SiNa$ 769.2397, found 769.2385.

1-((tert-Butyldimethylsilyl)oxy)-4-butyl 3',4',6'-Tri-O-benzyl-2'deoxy-2'-iodo-β-D-glucopyranoside (3jβ). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/ EtOAc 8/1) to give compound $3i\beta$ (14.1 mg, 31%): white solid; R_f 0.38 (8/1 *n*-hexane/EtOAc); $[\alpha]^{25}_{D}$ +23.3° (c 1.15, CHCl₃); mp 38– 39 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (2H, m), 7.36–7.26 (11H, m), 7.19-7.17 (2H, m), 4.98 and 4.86 (2H, ABq, J = 10.3 Hz), 4.80 and 4.56 (2H, ABq, J = 10.9 Hz), 4.61 and 4.54 (2H, ABq, J =12.3 Hz), 4.53 (1H, d, I = 8.9 Hz), 3.95-3.90 (2H, m), 3.75-3.64 (5H, m), 3.61 (1H, dd, I = 8.6 and 9.8 Hz), 3.55 (1H, dt, I = 6.6 and 1.6 m)9.8 Hz), 3.49 (1H, ddd, J = 2.3, 4.3, and 9.8 Hz), 1.73–1.62 (4H, m), 0.89 (9H, s), 0.05 (6H, s); 13 C NMR (125 MHz, CDCl₃) δ 138.0, $137.7, 128.5, 128.4 \times 2, 128.1, 127.9 \times 2, 127.8 \times 2, 127.6, 103.1, 85.9,$ 79.6, 75.5, 75.2, 74.9, 70.1, 68.5, 62.8, 33.2, 29.3, 25.9, 18.3, -5.25; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{37}H_{51}IO_6SiNa$ 769.2397, found 769.2401.

1-((Triethylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- α -D-glucopyranoside ($3k\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/ 1) to give compound $3k\alpha$ (21.6 mg, 49%): colorless syrup; R_f 0.47 (8/ 1 *n*-hexane/EtOAc); $[\alpha]^{25}_{D}$ +12.5° (*c* 1.58, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.25 (13H, m), 7.16–7.15 (2H, m), 5.52 (1H, br s), 4.85 and 4.48 (2H, ABq, J = 10.6 Hz), 4.73 and 4.50 (2H, ABq, J= 12.0 Hz), 4.70 and 4.53 (2H, ABq, J = 11.5 Hz), 4.58 (1H, br d, J =4.0 Hz), 3.97 (1H, ddd, J = 1.5, 4.0, and 9.8 Hz), 3.93 (1H, dd, J = 8.6 and 9.8 Hz), 3.85 (1H, m), 3.81 (1H, dd, J = 4.0 and 10.6 Hz), 3.70 (1H, br d, J = 10.6 Hz), 3.50 (1H, br d, J = 5.5 Hz), 3.33 (1H, dd, J =4.0 and 8.6 Hz), 1.10 (3H, d, J = 6.6 Hz), 0.96 (9H, t, J = 8.1 Hz), 0.60 (6H, q, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.9, 128.4, 128.3, 128.2, 128.1, 127.9, 127.7×3 , 127.4, 101.9, 76.1, 75.4, 75.3, 73.3, 72.2, 70.7, 68.9, 67.1, 34.0, 17.7, 6.83, 4.36; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₆H₄₉IO₆SiNa 755.2241, found 755,2227.

1-((Triethylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo- β -D-glucopyranoside (3k β). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3k β (8.8 mg, 20%): colorless syrup; R_f 0.42 (8/1 n-hexane/EtOAc); [α]²⁶_D +27.9° (c 0.74, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.42 (2H, m), 7.37–7.25 (11H, m), 7.20–7.17 (2H, m), 4.97 and 4.86 (2H, ABq, J = 10.3 Hz), 4.80 and 4.59 (2H, ABq, J = 10.6 Hz), 4.63 (1H, d, J = 9.2 Hz), 4.61 and 4.53 (2H, ABq, J = 10.9 Hz), 3.90–3.82 (3H, m), 3.74–3.69 (3H, m), 3.62 (1H, dd, J = 8.9 and 9.8 Hz), 3.50–3.46 (2H, m), 1.27 (3H, d, J = 6.0 Hz), 0.95 (9H, t, J = 8.0 Hz), 0.60 (6H, q, J = 8.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 137.8, 137.7, 128.5, 128.4 × 2, 128.1, 127.9 × 2, 127.7, 127.6, 102.1, 86.0, 79.6, 75.5, 75.2, 74.9, 73.6, 68.6, 66.5, 33.8, 16.8, 6.77, 4.39; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{36}H_{49}IO_6SiNa$ 755.2241, found 755.2251.

1-((tert-Butyldimethylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo-α-D-glucopyranoside (3lα). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3lα (22.1 mg, 50%): colorless syrup; R_f 0.46 (8/1 n-hexane/EtOAc); $[\alpha]^{25}_D$ +12.8° (c 1.57, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.25 (13H, m), 7.16–7.14 (2H, m), 5.51 (1H, br s), 4.85 and 4.48 (2H, ABq, J = 10.6 Hz), 4.73 and 4.51 (2H, ABq, J = 12.4 Hz), 4.70 and 4.53 (2H, ABq, J = 11.5 Hz), 4.54 (1H, dd, J = 1.1 and 4.3 Hz), 3.97 (1H, ddd, J = 1.7, 4.3, and 10.1 Hz), 3.92 (1H, dd, J = 8.6 and 10.1 Hz), 3.85 (1H, m), 3.81 (1H, dd, J = 4.3 and 10.9 Hz), 3.70 (1H, dd, J = 1.7 and 10.9 Hz), 3.49 (1H, br d, J = 5.8 Hz), 3.32 (1H, dd, J = 4.3 and 8.6 Hz), 1.09 (3H, d, J = 6.6 Hz), 0.90 (9H, s), 0.05 × 2 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 138.2, 137.9, 128.4, 128.3, 128.2, 128.1, 127.9, 127.7 × 2, 127.6, 127.4, 101.8, 76.1, 75.3 × 2, 73.3, 72.2, 70.8, 68.9, 67.4, 34.0, 25.9,

18.2, 17.7, -5.35, -5.41; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{36}H_{49}IO_6SiNa$ 755.2241, found 755.2261.

1-((tert-Butyldimethylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy-2'-iodo-β-D-glucopyranoside (3Iβ). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 3Iβ (10.4 mg, 24%): white solid; R_f 0.40 (8/1 n-hexane/EtOAc); $[\alpha]^{25}_D$ +26.8° (c 0.77, CHCl₃); mp 54–55 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.25 (13H, m), 7.20–7.18 (2H, m), 4.97 and 4.86 (2H, ABq, J = 10.3 Hz), 4.80 and 4.60 (2H, ABq, J = 10.6 Hz), 4.63 (1H, d, J = 8.9 Hz), 4.56 and 4.54 (2H, ABq, J = 10.9 Hz), 3.90–3.81 (3H, m), 3.74–3.70 (3H, m), 3.61 (1H, dd, J = 8.9 and 9.8 Hz), 3.50–3.45 (2H, m), 1.26 (3H, d, J = 6.6 Hz), 0.89 (9H, s), 0.06 (3H, s), 0.04 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 137.8, 137.7, 128.5, 128.4 × 2, 128.1, 127.9 × 2, 127.7, 127.6, 101.9, 86.0, 79.6, 76.6, 75.5, 75.2, 74.9, 68.6, 66.8, 33.8, 25.9, 18.3, 16.7, -5.25, -5.30; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{36}H_{49}IO_6SiNa$ 755.2241, found 755.2253.

1-((tert-Butyldiphenylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-ben*zyl-2'-deoxy-\alpha-D-glucopyranoside* (**4e** α **)**. The anomeric mixture was purified by flash column chromatography (10 g, CHCl₃) to give compound $4e\alpha$ (26.7 mg, 61%): colorless syrup; R_f 0.48 (CHCl₃); $[\alpha]^{25}_{D}$ +49.6° (c 1.46, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.69– 7.65 (4H, m), 7.44-7.26 (19H, m), 7.18-7.16 (2H, m), 5.22 (1H, br d, J = 2.9 Hz), 4.89 and 4.51 (2H, ABq, J = 10.6 Hz), 4.66 and 4.52 (2H, ABq, J = 12.3 Hz), 4.66 and 4.62 (2H, ABq, J = 12.3 Hz), 4.01(1H, ddd, J = 5.2, 8.9, and 11.5 Hz), 3.94-3.86 (2H, m), 3.80 (1H, dd, J)J = 3.7 and 10.6 Hz), 3.67 (1H, dd, J = 1.7 and 10.6 Hz), 3.62 (1H, dd, J = 8.9 and 9.8 Hz), 3.60 (1H, dd, J = 6.9 and 10.6 Hz), 3.52 (1H, dd, J= 4.3 and 10.6 Hz), 2.28 (1H, dd, J = 5.2 and 12.6 Hz), 1.68 (1H, ddd, I = 3.7, 11.5, and 12.6 Hz), 1.10 (3H, d, I = 6.3 Hz), 1.04 (9H, s); 13 C NMR (125 MHz, CDCl₃) δ 138.8, 138.5, 138.2, 135.6, 133.5, 129.6 \times $2, 128.4, 128.3, 127.7, 127.6, 127.5 \times 2, 97.9, 78.4, 77.8, 75.0, 74.2,$ 73.5, 71.7, 70.9, 68.9, 67.8, 35.6, 26.8, 19.2, 18.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₆H₅₄O₆SiNa 753.3587, found 753.3578.

1-((tert-Butyldiphenylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-ben*zyl-2'-deoxy-\beta-D-glucopyranoside* (**4e\beta**). The anomeric mixture was purified by flash column chromatography (10 g, CHCl₃) to give compound $4e\beta$ (8.9 mg, 20%): colorless syrup; R_f 0.53 (CHCl₃); $[\alpha]^{27}_{D}$ +2.31° (c 1.60, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.68– 7.65 (4H, m), 7.41–7.19 (21H, m), 4.87 and 4.55 (2H, ABq, J = 10.9Hz), 4.67 and 4.59 (2H, ABq, J = 11.8 Hz), 4.52 and 4.41 (2H, ABq, J = 12.3 Hz), 4.48 (1H, dd, J = 1.8 and 9.8 Hz), 3.95–3.89 (2H, m), 3.66 (1H, dd, J = 4.6 and 10.9 Hz,), 3.62 (1H, ddd, J = 5.2, 8.9, and 11.8 Hz), 3.57 (1H, dd, J = 1.7 and 10.9 Hz), 3.54–3.47 (2H, m), 3.30 (1H, ddd, J = 1.7, 4.6, and 9.7 Hz), 2.27 (1H, ddd, J = 1.8, 5.2, and 12.4 Hz), 1.60 (1H, ddd, J = 9.8, 11.8, and 12.4 Hz), 1.24 (3H, d, J = 6.1 Hz), 1.05 (9H, s); ¹³C NMR (125 MHz, CDCl₃) δ 138.4 × 2, $135.7, 135.6, 133.8, 133.7, 129.5, 128.4, 128.3 \times 2, 128.0, 127.7, 127.6$ × 3, 127.4, 98.1, 79.5, 78.1, 75.1, 74.9, 74.7, 73.5, 71.3, 69.2, 67.5, 37.0, 26.9, 19.3, 17.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₆H₅₄O₆SiNa 753.3587, found 753.3583.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 3',4',6'-Tri-O-benzyl-2'-deoxy- α -D-glucopyranoside (4 $g\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $4g\alpha$ (20.0 mg, 58%): colorless syrup; R_f 0.41 (8/1 *n*-hexane/EtOAc); $[\alpha]_{D}^{28}$ +49.3° (*c* 1.02, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.24 (13H, m), 7.18-7.16 (2H, m), 5.01 (1H, br d, J = 2.9 Hz), 4.89 and 4.49 (2H, ABq, J = 10.6 Hz), 4.68 and 4.64 (2H, ABq, J = 11.5 Hz), 4.65 and 4.49 (2H, ABq, J = 12.6 Hz), 3.99(1H, ddd, J = 4.9, 8.9, and 11.8 Hz), 3.94 (1H, ddd, J = 2.0, 4.0, and 9.8 Hz), 3.79 (1H, dd, J = 4.0 and 10.6 Hz), 3.66 (1H, dd, J = 2.0 and 10.6 Hz), 3.59 (1H, dd, J = 8.9 and 9.8 Hz), 3.30 (1H, ddd, J = 4.0, 10.6, and 10.6 Hz), 2.25 (1H, dd, J = 4.9 and 12.6 Hz), 2.11-2.09 (1H, m), 2.04-1.98 (1H, m), 1.68 (1H, ddd, J = 3.8, 11.8, and 12.6)Hz), 1.39-1.32 (1H, m), 1.19-1.13 (1H, m), 0.90 (3H, d, J = 7.2 Hz), 0.83 (3H, d, J = 6.6 Hz), 0.74 (3H, d, J = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.5, 128.4, 128.3 × 2, 128.1, 127.6, 127.6, 127.5, 127.4, 96.3, 79.7, 78.2, 76.2, 75.1, 75.0, 73.6, 71.2, 69.7, 47.8, 40.7, 37.3, 34.4, 31.4, 25.2, 23.1, 22.3, 21.0, 15.8; HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{37}H_{48}O_5Na$ 595.3399, found 595.3405.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 3',4',6'-Tri-O-benzyl-2'-deoxy- β -D-glucopyranoside (4 $g\beta$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $4g\beta$ (8.2 mg, 24%): white solid; $R_{\rm f}$ 0.48 (8/1 nhexane/EtOAc); $[\alpha]^{25}_{D}$ -51.5° (c 1.28, CHCl₃); mp 97-98 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.26 (15H, m), 4.90 and 4.61 (2H, ABq, J = 10.9 Hz), 4.68 and 4.55 (2H, ABq, J = 11.8 Hz), 4.62 and 4.59 (2H, ABq, J = 11.8 Hz), 4.54 (1H, dd, J = 1.8 and 9.8 Hz), 3.72 (1H, br d, J = 3.5 Hz), 3.67 (1H, ddd, J = 4.9, 8.6, and 11.5 Hz), 3.53 (1H, ddd, J = 4.3, 11.8, and 11.8 Hz), 3.52 (1H, dd, J = 8.6 and 9.8 Hz), 3.38 (1H, ddd, I = 3.2, 3.2, and 9.8 Hz), 2.34–2.28 (1H, m), 2.27 (1H, ddd, I = 1.8, 4.9, and 12.3 Hz), 2.00–1.97 (1H, m), 1.66–1.61 (3H, m), 1.39-1.31 (1H, m), 1.23-1.18 (1H, m), 0.91 (3H, d, J = 6.6)Hz), 0.90 (3H, d, J = 6.9 Hz), 0.82 (3H, d, J = 6.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.8, 138.6, 138.2, 128.3 \times 3, 127.9, 127.8, 127.7, $127.5 \times 2,99.5,80.5,78.5,77.7,74.9,73.4,71.7,70.8,69.0,48.8,43.0,$ 36.0, 34.3, 31.6, 25.8, 23.3, 22.2, 21.1, 16.4; HRMS (ESI-TOF) *m/z* $[M + Na]^+$ calcd for $C_{37}H_{48}O_5Na$ 595.3399, found 595.3390.

(3S)-2,2-Dimethyl-1,3-dioxolane-4-methyl 3',4',6'-Tri-O-benzyl-2'-deoxy- α -D-glucopyranoside (4h α). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 3/1) to give compound $4h\alpha$ (18.2 mg, 55%): colorless syrup; R_f 0.45 (3/1 *n*-hexane/EtOAc); $[\alpha]^{25}_{D}$ +71.9° (*c* 1.27, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.26 (13H, m), 7.18-7.17 (2H, m), 4.99 (1H, br d, J = 2.9 Hz), 4.88 and 4.52 (2H, ABq, J = 10.9 Hz), 4.63 and 4.51 (2H, ABq, J = 12.3 Hz), 4.66 and 4.62 (2H, ABq, J = 11.8 Hz), 4.26(1H, m), 4.03 (1H, dd, J = 6.6 and 8.3 Hz), 3.98 (1H, ddd, J = 5.2, 8.9,and 11.5 Hz), 3.78-3.58 (6H, m), 3.46 (1H, dd, J = 6.3 and 10.3 Hz), 2.35 (1H, dd, J = 5.2 and 12.4 Hz), 1.73 (1H, ddd, J = 3.7, 11.5, and 12.4 Hz), 1.40 (3H, s), 1.36 (3H, s); 13 C NMR (125 MHz, CDCl₃) δ $138.7, 138.5, 138.1, 128.4, 128.3, 127.9, 127.8, 127.6 \times 2, 127.5, 109.6,$ 97.8, 78.2, 77.5, 75.0, 74.7, 73.5, 71.8, 70.9, 68.9, 66.8, 35.3, 26.7, 25.5; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₃H₄₀O₇Na 571.2672, found 571.2668.

(3S)-2,2-Dimethyl-1,3-dioxolane-4-methyl 3',4',6'-Tri-O-benzyl-2'-deoxy- β -D-glucopyranoside (4h β). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 3/1) to give compound $4h\beta$ (10.7 mg, 33%): colorless syrup; R_f 0.43 (3/1 *n*-hexane/EtOAc); $[\alpha]_{D}^{25}$ –5.86° (*c* 0.71, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.26 (13H, m), 7.21–7.20 (2H, m), 4.89 and 4.55 (2H, ABq, J = 10.6 Hz), 4.67 and 4.59 (2H, ABq, J = 11.8 Hz), 4.62 and 4.55 (2H, ABq, J = 10.3 Hz), 4.48 (1H, dd, J = 1.8 and 9.8 Hz), 4.28 (1H, m), 4.04 (1H, dd, J = 6.3 and 8.3 Hz), 3.93 (1H, dd, J =4.9 and 10.6 Hz), 3.83 (1H, dd, I = 6.0 and 8.3 Hz), 3.74 (1H, dd, I =2.0 and 10.9 Hz), 3.70 (1H, dd, J = 4.9 and 10.9 Hz), 3.65 (1H, ddd, J= 4.9, 8.9, and 11.5 Hz), 3.54 (1H, dd, J = 5.7 and 10.3 Hz), 3.50 (1H, 1.5 Hzdd, J = 8.9 and 9.8 Hz), 3.40 (1H, ddd, J = 2.0, 4.9, and 9.8 Hz), 2.34(1H, ddd, J = 1.8, 4.9, and 12.6 Hz), 1.65 (1H, ddd, J = 9.8, 11.5, and 12.6 Hz), 1.41 (3H, s, CH₃), 1.36 (3H, s, CH₃); ¹³C NMR (125 MHz, $CDCl_3$) δ 138.3, 138.2, 128.4, 128.3, 128.0, 127.8, 127.7, 127.6, 109.3, 100.2, 79.3, 78.0, 75.2, 75.0, 73.5, 71.4, 69.3, 69.2, 66.6, 36.5, 26.7, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₃H₄₀O₇Na 571.2672, found 571.2679.

1-((tert-Butyldimethylsilyl)oxy)-4-butyl 3',4',6'-Tri-O-benzyl-2'*deoxy-* α -D-*glucopyranoside* (**4j** α **)**. The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $4j\alpha$ (20.9 mg, 56%): colorless syrup; R_f 0.39 (8/1 nhexane/EtOAc); $[\alpha]^{26}_{D}$ –3.45° (c 1.22, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.25 (13H, m), 7.18–7.16 (2H, m), 4.94 (1H, br d, J = 2.6 Hz), 4.89 and 4.51 (2H, ABq, J = 10.6 Hz), 4.67 and 4.63 (2H, ABq, J = 11.8 Hz), 4.64 and 4.51 (2H, ABq, J = 10.9 Hz), 3.99 (1H, ddd, J = 4.9, 8.9, and 11.5 Hz), 3.79-3.73 (2H, m), 3.66 (1H, dd, J = 1.5 and 10.1 Hz), 3.64-3.60 (4H, m), 3.37 (1H, dt, J = 6.1 and 9.7Hz), 2.27 (1H, dd, J = 4.9 and 12.6 Hz), 1.71 (1H, ddd, J = 3.7, 11.5, and 12.6 Hz), 1.62-1.52 (4H, m), 0.89 (9H, s), 0.04 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 138.5, 138.2, 128.3 \times 2, 127.9 \times 2, 127.6, 127.5, 97.3, 78.3, 77.8, 75.0, 73.4, 71.8, 70.7, 68.9, 67.1, 62.9, 35.5, 31.6, 26.0, 18.3, -5.30; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₇H₅₂O₆SiNa 643.3431, found 643.3436.

1-((tert-Butyldimethylsilyl)oxy)-4-butyl 3',4',6'-Tri-O-benzyl-2'deoxy- β -D-glucopyranoside (4 $j\beta$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 4j β (8.5 mg, 23%): colorless syrup; R_f 0.42 (8/1 *n*-hexane/ EtOAc); $[\alpha]^{25}_{D}$ +59.1° (c 1.74, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.26 (13H, m), 7.21-7.20 (2H, m), 4.89 and 4.55 (2H, ABq, J = 10.9 Hz), 4.68 and 4.56 (2H, ABq, J = 11.7 Hz), 4.62 and 4.59 (2H, ABq, J = 12.3 Hz), 4.43 (1H, dd, J = 1.8 and 9.8 Hz), 3.92 (1H, dt, J = 1.8 mg) 6.6 and 9.5 Hz), 3.76 (1H, dd, J = 2.0 and 10.9 Hz), 3.71 (1H, dd, J =4.9 and 10.9 Hz), 3.66 (1H, ddd, I = 4.9, 8.6, and 11.5 Hz), 3.62 (1H, t, J = 6.0 Hz), 3.50 (1H, dd, J = 8.6 and 9.7 Hz), 3.46 (1H, dt, J = 6.9 Hz) and 9.5 Hz), 3.41 (1H, ddd, J = 2.0, 4.9, and 9.7 Hz), 2.34 (1H, ddd, J = 1.8, 4.9, and 12.6 Hz), 1.67-1.54 (5H, m), 0.89 (9H, s), 0.04 (6H, s); 13 C NMR (125 MHz, CDCl₃) δ 138.4, 138.3, 128.4, 128.3 \times 2, 128.0, 127.8, 127.7, 127.6, 127.5, 99.8, 79.5, 78.2, 75.2, 75.0, 73.4, 71.4, 69.4, 69.2, 62.9, 36.7, 29.4, 26.0, 18.3, -5.30; HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{37}H_{52}O_6SiNa$ 643.3431, found 643.3440.

1-((tert-Butyldimethylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-ben*zyl-2'-deoxy-\alpha-D-glucopyranoside* (**4***l* α **)**. The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $4l\alpha$ (19.3 mg, 53%): colorless syrup; R_f 0.41 (8/1 nhexane/EtOAc); $[\alpha]^{27}_{D}$ +52.4° (c 1.61, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.24 (13H, m), 7.18–7.16 (2H, m), 5.21 (1H, br d, J = 3.2 Hz), 4.89 and 4.51 (2H, ABq, J = 10.9 Hz), 4.67 and 4.63 (2H, ABq, J = 11.5 Hz), 4.66 and 4.51 (2H, ABq, J = 12.1 Hz), 4.00 (1H, ddd, J = 5.2, 9.2, and 11.8 Hz), 3.86 (1H, ddd, J = 2.1, 3.4, and 9.7 Hz), 3.83-3.78 (2H, m), 3.66 (1H, dd, I = 2.1 and 10.4 Hz), 3.62(1H, dd, J = 9.2 and 9.7 Hz), 3.53 (1H, dd, J = 6.9 and 10.6 Hz), 3.48 (1H, dd, J = 4.6 and 10.6 Hz), 2.30 (1H, ddd, J = 1.2, 5.2, and 12.9 Hz), 1.70 (1H, ddd, I = 3.8, 11.8, and 12.9 Hz), 1.09 (3H, d, I = 6.3Hz), 0.88 (9H, s), 0.04 (6H, s); 13 C NMR (125 MHz, CDCl₃) δ 138.8, 138.5, 138.2, 128.3 \times 2, 128.0, 127.9, 127.6, 127.5 \times 2, 97.8, 78.5, 77.8, 75.0, 74.2, 73.5, 71.7, 70.9, 68.9, 67.2, 35.7, 25.9, 18.2, 17.9, -5.33, -5.40; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₆H₅₀O₆SiNa 629.3274, found 629.3260.

1-((tert-Butyldimethylsilyl)oxy)-(2R)-2-propyl 3',4',6'-Tri-O-benzyl-2'-deoxy- β -D-glucopyranoside (4 β). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $4l\alpha$ (9.1 mg, 25%): colorless syrup; $R_{\rm f}$ 0.40 (8/1 nhexane/EtOAc); $[\alpha]^{25}_{D}$ –2.27° (c 1.53, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.26 (13H, m), 7.22–7.20 (2H, m), 4.89 and 4.56 (2H, ABq, J = 10.9 Hz), 4.68 and 4.62 (2H, ABq, J = 11.5 Hz), 4.62 and 4.57 (2H, ABq, J = 11.5 Hz), 4.54 (1H, dd, $\hat{J} = 1.7$ and 9.8 Hz), 3.89-3.83 (2H, m), 3.74-3.70 (2H, m), 3.66 (1H, ddd, J = 5.2, 8.9, and 11.8 Hz), 3.51 (1H, dd, J = 8.9 and 9.5 Hz), 3.45–3.37 (2H, m), 2.31 (1H, ddd, J = 1.7, 5.2, and 12.6 Hz), 1.64 (1H, ddd, J = 9.7, 11.8, and 12.6 Hz), 1.17 (3H, d, J = 6.0 Hz), 0.88 (9H, s), 0.05 (3H, s), 0.04 (3H, s); ^{13}C NMR (125 MHz, CDCl $_3$) δ 138.4 \times 2, 128.4, 128.3 \times 2, $128.0, 127.7 \times 2, 127.6, 127.5, 98.1, 79.5, 78.1, 75.2, 75.0, 74.7, 73.5,$ 71.3, 69.4, 66.9, 37.1, 25.9, 18.3, 17.1, -5.28, -5.32; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₆H₅₀O₆SiNa 629.3274, found

Cyclohexylmethyl 4,6-Di-O-benzyl-2,3-dideoxy-D-erythro-hex-2-enopyranoside (5a). The residue was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $\mathbf{5}\alpha$ (14.7 mg, 58%): colorless syrup; $R_{\rm f}$ 0.45 (8/1 n-hexane/EtOAc); $[\alpha]^{28}_{\rm D}$ +76.3° (c 1.23, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.23 (10H, m), 6.06 (1H, br d, J = 10.3 Hz), 5.77 (1H, dt, J = 2.0 and 10.3 Hz), 4.71 (1H, br s), 4.65 and 4.51 (2H, ABq, J = 12.0 Hz), 4.60 and 4.43 (2H, ABq, J = 11.5 Hz), 4.16 (1H, dd, J = 1.2 and 9.2 Hz), 3.96 (1H, ddd, J = 2.0 and 10.6 Hz), 3.70 (1H, dd, J = 2.0 and 10.6 Hz), 3.59 (1H, dd, J = 6.9 and 9.5 Hz), 3.29 (1H, dd, J = 6.3 and 9.5 Hz), 1.77–1.54 (6H, m), 1.26–1.09 (3H, m), 0.95–0.88 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.2, 138.1, 128.3 × 2, 127.8 × 2, 127.7, 127.5, 126.7, 94.6, 74.3, 73.3, 71.0, 70.4, 69.1, 68.9, 38.0, 30.1, 30.0, 26.6, 25.8, 25.7; HRMS (ESI-TOF) m/z [M + Na]+ calcd for $C_{27}H_{34}O_4$ Na 445.2355, found 445.2346.

Mixture of Compounds **8–10**. The residue was purified by flash column chromatography (10 g, CHCl₃/EtOAc 30/1) to give a mixture of **8–10** (21.1 mg, 68%): 1 H NMR (500 MHz, CDCl₃) δ 7.36–7.25

(13H, m), 7.18–7.16 (2H, m), 5.11 (1H, d, J = 4.0 Hz), 4.89 and 4.51 (2H, ABq, J = 10.6 Hz), 4.65 and 4.50 (2H, ABq, J = 12.6 Hz), 4.68 and 4.64 (2H, ABq, J = 11.5 Hz), 4.02 (1H, dd, J = 9.2 and 11.4 Hz), 3.85 (1H, ddd, J = 2.0, 4.0, and 9.8 Hz), 3.79 (1H, dd, J = 4.0 and 10.6 Hz), 3.67 (1H, dd, J = 2.0 and 10.6 Hz), 3.61 (1H, dd, J = 9.2 and 9.8 Hz), 2.24 (0.29H, ddd, J = 1.2, 4.0, and 12.9 Hz), 1.76–1.70 (0.89H, m); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{33}H_{29}D_{11}O_5Na$ 550.3464, found 550.3466 and [M + Na]⁺ calcd for $C_{33}H_{28}D_{12}O_5Na$ 551.3527, found 551.3538.

Mixture of Compounds **11–13**. The residue was purified by flash column chromatography (10 g, CHCl₃/EtOAc 30/1) to give a mixture of **11–13** (4.9 mg, 16%): ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.25 (13H, m), 7.23–7.21 (2H, m), 4.90 and 4.56 (2H, ABq, J = 10.9 Hz), 4.68 and 4.59 (2H, ABq, J = 11.5 Hz), 4.62 and 4.57 (2H, ABq, J = 12.4 Hz), 4.56 (1H, d, J = 7.8 Hz), 3.77 (1H, dd, J = 2.0 and 10.6 Hz), 3.68 (1H, dd, J = 8.3 and 11.5 Hz), 3.47 (1H, dd, J = 8.3 and 9.8 Hz), 3.41 (1H, ddd, J = 2.0, 5.2, and 9.8 Hz), 2.31 (0.31H, ddd, J = 1.8, 4.9, and 12.4 Hz), 1.70–1.63 (0.85H, m); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₃H₂₉D₁₁O₅Na 550.3464, found 550.3456 and [M + Na]⁺ calcd for C₃₃H₂₈D₁₂O₅Na 551.3527, found 551.3531.

Cyclohexylmethyl 3,4,6-Tri-O-benzyl-2-deoxy-2-iodo- α -D-galactopyranoside (16a α). The residue was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound $16a\alpha$ (34.7 mg, 88%): colorless syrup; R_f 0.41 (8/1 *n*-hexane/EtOAc); $\delta_{\rm D}$ +75.7° (c 0.79, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.45– 7.43 (2H, m), 7.38-7.22 (13H, m), 4.91 (1H, br s), 4.89 and 4.52 (2H, ABq, J = 11.2 Hz), 4.77 and 4.72 (2H, ABq, J = 11.2 Hz), 4.49 and 4.42 (2H, ABq, J = 11.8 Hz), 4.48 (1H, dd, J = 1.2 and 4.3 Hz), 4.01 (1H, dd, J = 6.6 and 6.9 Hz), 3.95–3.91 (2H, m), 3.56 (1H, dd, J= 6.9 and 9.5 Hz), 3.53 (1H, dd, I = 6.6 and 9.5 Hz), 3.47 (1H, dd, I =6.6 and 9.5 Hz), 3.25 (1H, dd, J = 6.3 and 9.5 Hz), 1.80–1.60 (6H, m), 1.30-1.12 (3H, m), 1.01-0.87 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 137.9 × 2, 128.4 × 2, 128.2 × 2, 128.0, 127.8, 127.7 × 2, 98.9, 79.0, 75.2, 74.9, 74.2, 73.5, 73.2, 69.6, 68.8, 50.9, 37.6, 30.0, 29.9, 26.6, 25.8 × 2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₄H₄₁IO₅Na 679.1896, found 679.1891.

Cyclohexylmethyl 3,4-Di-O-benzyl-2,6-dideoxy-2-iodo- α -D-glucopyranoside (17 $\alpha\alpha$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 17a α (28.4 mg, 64%): colorless syrup; $R_{\rm f}$ 0.43 (8/1 nhexane/EtOAc); $[\alpha]^{28}_{D}$ +1.28° (c 1.78, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.41 (2H, m), 7.36–7.25 (8H, m), 5.07 (1H, br s), 4.91 and 4.61 (2H, ABq, J = 10.9 Hz), 4.69 and 4.52 (2H, ABq, J =11.2 Hz), 4.48 (1H, dd, J = 1.1 and 4.3 Hz), 3.79 (1H, dq, J = 6.4 and 9.5 Hz), 3.47 (1H, dd, J = 8.9 and 9.5 Hz), 3.40 (1H, dd, J = 6.6 and 9.2 Hz), 3.24 (1H, dd, J = 4.3 and 8.9 Hz), 3.15 (1H, dd, J = 6.3 and 9.5 Hz), 1.71-1.65 (5H, m), 1.55-1.47 (1H, m), 1.31 (3H, d, J = 6.4 Hz), 1.27-1.10 (3H, m), 0.93-0.86 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 137.8, 128.4, 128.2, 128.0, 127.7, 101.4, 81.6, 75.5, 73.5, 70.9, 68.2, 37.8, 34.6, 29.9, 29.8, 26.5, 25.8, 25.7, 18.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{27}H_{35}IO_4Na$ 573.1478, found 573.1467.

Cyclohexylmethyl 3,4-Di-O-benzyl-2,6-dideoxy-2-iodo-β-D-gluco-pyranoside (17*αβ*). The anomeric mixture was purified by flash column chromatography (10 g, *n*-hexane/EtOAc 8/1) to give compound 17*αβ* (11.0 mg, 25%): white solid; R_f 0.40 (8/1 n-hexane/EtOAc); $[\alpha]^{28}_D$ +29.8° (c 1.25, CHCl₃); mp 110–111 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (2H, m), 7.37–7.28 (8H, m), 4.98 and 4.85 (2H, ABq, J = 10.3 Hz), 4.86 and 4.65 (2H, ABq, J = 10.8 Hz), 4.49 (1H, d, J = 8.9 Hz), 3.91 (1H, dd, J = 8.9 and 10.8 Hz), 3.71–3.66 (2H, m), 3.43 (1H, dq, J = 6.2 and 9.2 Hz), 3.27 (1H, dd, J = 7.1 and 9.2 Hz), 3.20 (1H, dd, J = 8.9 and 9.2 Hz), 1.92–1.89 (1H, m), 1.79–1.59 (5H, m), 1.31 (3H, d, J = 6.2 Hz), 1.28–1.11 (3H, m), 1.01–0.92 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 137.8, 128.5, 128.4, 128.1, 128.0, 127.9, 103.1, 85.8, 85.1, 76.1, 75.5, 75.3, 71.4, 37.8, 33.6, 30.1, 29.8, 26.6, 25.8, 25.7, 17.6; HRMS (ESI-TOF) m/z [M + Na]+ calcd for $C_{27}H_{35}IO_4Na$ 573.1478, found 573.1475.

Cyclohexylmethyl 3,4,6-Tri-O-benzyl-2-deoxy- α -D-galactopyra-noside (18a α). The anomeric mixture was purified by flash column

chromatography (10 g, *n*-hexane/EtOAc 8/1) to give compound **18a** α (20.5 mg, 65%): colorless syrup; $R_{\rm f}$ 0.43 (8/1 n-hexane/EtOAc); $[\alpha]^{27}_{\rm D}$ +43.1° (c 1.71, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.24 (15H, m), 4.94 (1H, br d, J = 3.2 Hz), 4.93 and 4.62 (2H, ABq, J = 11.8 Hz), 4.62 and 4.62 (2H, ABq, J = 12.6 Hz), 4.51 and 4.43 (2H, ABq, J = 11.7 Hz), 3.95–3.92 (2H, m), 3.89 (1H, dd, J = 6.6 and 6.9 Hz), 3.60 (1H, dd, J = 6.9 and 9.5 Hz), 3.56 (1H, dd, J = 6.1 and 9.5 Hz), 3.41 (1H, dd, J = 7.2 and 9.5 Hz), 3.16 (1H, dd, J = 6.1 and 9.5 Hz), 2.21 (1H, ddd, J = 3.8, 12.6, and 12.6 Hz), 1.98 (1H, dd, J = 4.6 and 12.6 Hz), 1.74–1.65 (5H, m), 1.58–1.51 (1H, m), 1.26–1.11 (3H, m), 0.95–0.86 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.9, 138.5, 138.2, 128.3 × 2, 128.2 × 2, 127.7, 127.6, 127.5, 127.3, 97.8, 74.9, 74.2, 73.4, 73.0 × 2, 70.4, 69.8, 69.6, 37.8, 31.2, 30.1, 30.0, 26.6, 25.8 × 2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{34}H_{42}O_5$ Na 553.2930, found 553.2922.

Cyclohexylmethyl 3,4,6-Tri-O-benzyl-2-deoxy-β-D-galactopyranoside (18 $\alpha\beta$). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 18aß (8.4 mg, 26%): colorless syrup; R_f 0.47 (8/1 *n*-hexane/EtOAc); $[\alpha]^{26}_{D}$ -26.5° (c 1.04, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.24 (15H, m), 4.92 and 4.64 (2H, ABq, J = 11.8 Hz), 4.59 and 4.56 (2H, ABq, J = 12.3 Hz), 4.47 and 4.43 (2H, ABq, J = 11.8 Hz), 4.37 (1H, dd, J = 3.2 and 9.2 Hz), 3.82 (1H, br s), 3.70 (1H, dd, J = 6.3 and 9.5 Hz), 3.64 (1H, dd, J = 7.2 and 9.5 Hz), 3.60 (1H, dd, J = 6.9 and 9.5 Hz), 3.54 (1H, ddd, J = 2.6, 5.8, and 11.5 Hz), 3.46 (1H, ddd, J = 1.2, 6.9, and 7.2 Hz), 3.18 (1H, dd, I = 7.2 and 9.5 Hz), 2.12–2.04 (2H, m), 1.78-1.52 (6H, m), 1.27-1.09 (3H, m), 0.93-0.84 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.9, 138.3, 138.1, 128.4 × 2, 128.3, 128.1, 127.8, 127.7, 127.6, 127.4, 127.3, 100.8, 77.5, 75.1, 74.4×2 , 73.5, 71.7, 70.1, 69.3, 37.9, 32.8, 30.1, 29.9, 26.6, 25.8×2 ; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{34}H_{42}O_5Na$ 553.2930, found

Cyclohexylmethyl 3,4-Di-O-benzyl-2,6-dideoxy-α-p-glucopyranoside (19αα). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 19αα (17.4 mg, 51%): colorless syrup; R_f 0.45 (8/1 n-hexane/EtOAc); $[\alpha]^{26}_D$ +61.3° (c 0.99, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (10H, m), 4.94 and 4.66 (2H, ABq, J = 10.9 Hz), 4.81 (1H, br d, J = 2.6 Hz), 4.68 and 4.64 (2H, ABq, J = 11.5 Hz), 3.95 –3.92 (2H, m), 3.72 (1H, dq, J = 6.3 and 9.5 Hz), 3.38 (1H, dd, J = 7.2 and 9.4 Hz), 2.28 (1H, dd, J = 8.6 and 9.5 Hz), 3.13 (1H, dd, J = 6.0 and 9.5 Hz), 2.28 (1H, ddd, J = 1.5, 5.2, and 12.9 Hz), 1.78 –1.64 (6H, m), 1.58 – 1.50 (1H, m), 1.28 (3H, d, J = 6.3 Hz), 1.25 –1.11 (3H, m), 0.96 –0.87 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 137.8, 128.4, 128.2, 128.0, 127.7, 101.4, 81.6, 75.5, 73.5, 70.9, 68.2, 37.8, 34.6, 29.9, 29.8, 26.5, 25.8, 25.7, 18.0; HRMS (ESI-TOF) m/z [M + Na]+ calcd for $C_{17}H_{36}O_4$ Na 447.2511, found 447.2513.

Cyclohexylmethyl 3,4-*Di-O-benzyl-2,6-dideoxy-β-D-glucopyranoside* (19αβ). The anomeric mixture was purified by flash column chromatography (10 g, n-hexane/EtOAc 8/1) to give compound 19αβ (12.1 mg, 35%): white solid; R_f 0.41 (8/1 n-hexane/EtOAc); [α]²⁵ $_D$ -20.7° (c 1.32, CHCl₃); mp 72–73°C; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.27 (10H, m), 4.95 and 4.65 (2H, ABq, J = 10.9 Hz), 4.69 and 4.60 (2H, ABq, J = 11.7 Hz), 4.38 (1H, dd, J = 2.0 and 9.7 Hz), 3.68 (1H, dd, J = 6.3 and 9.5 Hz), 3.62 (1H, ddd, J = 5.2, 8.6, and 11.8 Hz), 3.32 (1H, dq, J = 6.3 and 9.3 Hz), 3.19 (1H, dd, J = 7.2 and 9.5 Hz), 3.14 (1H, dd, J = 8.6 and 9.3 Hz), 2.35 (1H, ddd, J = 2.0, 5.2, and 12.6 Hz), 1.79–1.53 (7H, m), 1.33 (3H, d, J = 6.3 Hz), 1.30–1.11 (3H, m), 0.96–0.84 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ 137.8, 128.5, 128.4, 128.1, 128.0, 127.9, 103.0, 85.8, 85.1, 76.1, 75.5, 75.3, 71.4, 37.8, 33.6, 30.1, 29.8, 26.6, 25.8, 25.7, 17.6; HRMS (ESI-TOF) m/z [M + Na]+ calcd for $C_{27}H_{36}O_4$ Na 447.2511, found 447.2518.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b01542.

NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail for K.T.: toshima@applc.keio.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported in part by the MEXT-supported Program for the Strategic Research Foundation at Private Universities, 2012-2016, from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

REFERENCES

- (1) (a) Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G. W., Sinaÿ, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Vols. 1–4. (b) Glycoscience, Chemistry and Chemical Biology; Fraser-Reid, B. O., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin, Germany, 2001; Vols. 1–3
- (2) Functional Carbohydrates; Biriaderis, C. G., Izydorczyck, M. S., Eds.; CRC Press: Boca Raton, FL, 2006.
- (3) Demchenko, A. V. In *Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance*; Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp 1–27.
- (4) (a) Lemieux, R. U.; Levine, S. Can. J. Chem. 1964, 42, 1473. (b) Thiem, J.; Karl, H.; Schwentner, J. Synthesis 1978, 696, 696. (c) De Castro, M.; Marzabadi, C. H. Tetrahedron 2010, 66, 3395.
- (5) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380.
- (6) (a) Suzuki, K.; Sulikowski, G. A.; Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112, 8895. (b) Sebesta, D. P.; Roush, W. R. J. Org. Chem. 1992, 57, 4799.
- (7) (a) Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6656. (b) Wang, H.; Tao, J.; Cai, X.; Chen, W.; Zhao, Y.; Xu, Y.; Yao, W.; Zheng, J.; Wan, Q. Chem. Eur. J. 2014, 20, 17319.
- (8) Perret, P.; Slimani, L.; Briat, A.; Villemain, D.; Halimi, S.; Demongeot, J.; Fagret, D.; Ghezzi, C. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 734.
- (9) (a) Tanaka, H.; Takahashi, D.; Takahashi, T. Angew. Chem., Int. Ed. 2006, 45, 770. (b) Pradhan, T. K.; Lin, C. C.; Mong, K.-K. T. Org. Lett. 2014, 16, 1474.
- (10) For selected and recent references for direct synthesis of 2-deoxygycosides by glycosylation, see: (a) Issa, J. P.; Lloyd, D.; Steliotes, E.; Bennett, C. S. Org. Lett. 2013, 15, 4170. (b) Zhu, D.; Baryal, K. N.; Adhikari, S.; Zhu, J. J. Am. Chem. Soc. 2014, 136, 3172. (c) Beale, T. M.; Moon, P. J.; Taylor, M. S. Org. Lett. 2014, 16, 3604. (d) Kaneko, M.; Herzon, S. B. Org. Lett. 2014, 16, 2776.
- (11) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
- (12) Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, 570.
- (13) Kumar, B.; Aga, M. A.; Rouf, A.; Shah, B. A.; Taneja, S. C. J. Org. Chem. 2011, 76, 3506.
- (14) Toshima, K.; Nagai, H.; Kasumi, K.; Kawahara, K.; Matsumura, S. *Tetrahedron* **2004**, *60*, 5331.
- (15) Bolitt, V.; Mioskowski, C.; Lee, S.-G.; Falck, J. R. J. Org. Chem. 1990, 55, 5812.